
Cambridge Books Online

http://ebooks.cambridge.org/

Lévy Statistics and Laser Cooling

How Rare Events Bring Atoms to Rest

François Bardou, Jean-Philippe Bouchaud, Alain Aspect, Claude Cohen-Tannoudji

Book DOI: http://dx.doi.org/10.1017/CBO9780511755668

Online ISBN: 9780511755668

Hardback ISBN: 9780521808217

Paperback ISBN: 9780521004220

Chapter

6 - The momentum distribution pp. 69-87

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755668.007

Cambridge University Press



6

The momentum distribution

The fraction of trapped atoms ftrap(θ) studied in Chapter 5 gives global information
on the efficiency of subrecoil laser cooling: the proportion of atoms accumulated
within the sphere of radius ptrap. Within this sphere, one expects the momentum
distribution to exhibit a narrow peak, containing the cooled atoms. Knowledge of
ftrap(θ) does not provide enough information about this peak: for instance, one
might trap a significant fraction of atoms within ptrap but, in some unfavourable
cases, these atoms could be somewhat uniformly distributed over the trap, leaving
only a negligible fraction in the peak itself.

In order to get a better characterization of the cooling, we calculate in this
chapter the momentum distribution P(p) of the atoms contained within the sphere
of radius ptrap. In particular, we derive analytical expressions for various important
features of the narrow peak of P(p): its half-width w(θ); its height h(θ); its weight
fpeak(θ) (which we will call the ‘cooled fraction’); the shape of its tails and of its
central part. We also estimate the phase space density increase associated with the
cooling process. This will enable us to identify the relevant physical parameters of
subrecoil cooling and to get a better understanding of the role of non-ergodicity.

6.1 Brief survey of previous heuristic arguments

Before using the statistical tools introduced in Chapter 4, which will prove to be
very efficient for investigating the momentum distribution P(p), it is useful to
come back to the heuristic arguments which were first used [AAK88] to estimate
certain physical quantities such as the half-width w(θ) of the narrow peak. Such a
discussion will show that essential features of Lévy statistics were already implic-
itly used in those arguments although they were not explicitly formulated.

The first estimation [AAK88] of w(θ) was done in the following way. Since only
atoms of momentum p such that R(p) θ ≤ 1 can remain trapped during the whole
interaction time θ , it is natural to define a time-dependent characteristic momentum
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70 The momentum distribution

pθ by

R(pθ ) θ = 1 or, equivalently, τ (pθ ) = 1

R(pθ )
= θ (6.1)

which gives, using eq. (3.5):

pθ = p0

(τ0

θ

)1/α
. (6.2)

The heuristic argument consisted in conjecturing that pθ would give the order of
magnitude of the half-width w(θ) of the cooled peak:

w(θ) 
 pθ . (6.3)

Numerical solution of the Generalized Optical Bloch Equations (GOBE) for one-
dimensional σ+ − σ− laser configurations (α = 2) indeed confirmed the θ−1/2

behaviour of the peak half-width predicted by eqs. (6.2) and (6.3), over the limited
time range (
1500 �−1) reachable in a reasonable computer time [AAK89]. The
order of magnitude of the prefactor in eq. (6.2) was also confirmed numerically.
Two different analytical solutions of the same one-dimensional problem, based
on the GOBE, agreed with eq. (6.2) and eq. (6.3) [AlK92, SSY97]. The same
θ−1/2-dependence was also observed in a numerical solution of a specific two-
dimensional laser configuration [MaA91].

Though well established in specific cases, the above heuristic argument suffers
from a basic flaw which limits its generality: it makes the implicit assumption that
the atoms in the cooled peak at the end of the interaction time θ did remain trapped
for the whole interaction time θ . Obviously, this cannot be strictly true, since the
atoms need to perform a random walk to reach the trap, which usually takes a
non-negligible time. They enter the trap and they exit it several times. Those in the
trap at time θ may have entered the trap the last time a short time τ before θ and
their momentum p can be then much larger than pθ because p is only restricted by
the condition that such an atom must remain for a time at least equal to τ (which, in
this case, is much smaller than θ ). In order to be allowed to neglect the contribution
of the atoms that, at time θ , have not been trapped for a very long time, we must
implicitly assume that the total time θ is actually dominated by the duration of
a single event – the trapping time for an atom having its momentum within the
peak. We recognize here the unusual behaviour of Lévy statistics, where a single
term can determine the behaviour of a Lévy sum. We thus expect from such a
discussion that eq. (6.3) will hold approximately true only if the trapping times τ

obey a broad distribution with infinite mean.
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6.2 Basic expressions and characterization 71

6.2 Expressions of the momentum distribution and of related quantities

6.2.1 Distribution of the momentum modulus

We first introduce the distribution P(p, θ) of the momentum modulus p, restricted
to the trapping zone p ≤ ptrap. An atom trapped with momentum p at time θ might
have reached the p state (0 ≤ p ≤ ptrap) at any time tl (0 ≤ tl ≤ θ), provided that
it then remained in the trap at least until θ . The ‘date’ tl is thus the last trapping
date, i.e. it satisfies tl + τ ≥ θ where τ is the time spent in the p state, which
is distributed, conditionally to p, as P(τ |p). The probability density to reach a
p state at time tl is simply given by ρ(p) SR(tl), where SR(tl) is the sprinkling
distribution calculated in Chapter 5 and ρ(p) = DpD−1/pD

trap is the probability
density (see eq. (3.28)) for an atom entering the trap to have a momentum modulus
p (as in Chapter 3, we suppose that ptrap � h̄k, so that the volume of the trap
is reached uniformly). Thus the probability P(p, θ) is the sum (over all possible
tl) of the probability ρ(p)SR(tl) of reaching the trap at time tl with momentum p,
multiplied by the probability ψ(θ − tl |p) that the trapping time τ exceeds θ − tl
for an atom with momentum p:

P(p, θ) = ρ(p)
∫ θ

0
dtl SR(tl)ψ(θ − tl |p) (6.4)

where

ψ(τ |p) =
∫ ∞

τ

dτ ′ P(τ ′|p). (6.5)

Recalling that

P(τ ) =
∫ ptrap

0
dp ρ(p)P(τ |p) (6.6)

is the probability that the trapping time within ptrap is equal to τ , it is easy to check that,
as expected: ∫ ptrap

0
dp P(p, θ) =

∫ θ

0
dtl SR(tl)

∫ ∞

θ−tl
dτ P(τ ) = ftrap(θ) (6.7)

(see eq. (5.5) and eq. (5.6)).

We shall consider in the following the two models introduced in Section 3.3.1,
i.e. a deterministic model where

P(τ |p) = δ[τ − τ(p)] (6.8)

and an exponential model where

P(τ |p) = 1

τ(p)
exp [−τ/τ(p)]; (6.9)
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72 The momentum distribution

the two corresponding values of ψ(τ |p) are:

ψ(τ |p) = Y [τ(p) − τ ] (6.10)

for the deterministic model (Y being the Heaviside function) and

ψ(τ |p) = exp [−τ/τ(p)] (6.11)

for the exponential model. According to eq. (3.5), the dependence of τ(p) on the
momentum p is given, in general, by:

τ(p) = τ0

(
p0

p

)α
. (6.12)

Finally, a general result concerning the tails of the momentum distribution can
be simply derived from eq. (6.4). For p � pθ , we have τ(p) � θ according to eq.
(6.1). Equations (6.10) and (6.11) then show that ψ(θ − tl |p) has non-zero values
only if θ − tl � τ(p) � θ , so that only the region tl ∼ θ will contribute to the
integral of eq. (6.4). Since SR(t) varies more slowly than ψ(t |p), one can write:

P(p, θ) 

p�pθ

ρ(p)SR(θ)

∫ ∞

0
dτ ′ψ(τ ′|p) = ρ(p)SR(θ)

∫ ∞

0
dτ ′τ ′ P(τ ′|p)

(6.13)

where the last equality follows from an integration by parts. By definition, τ(p) is
the average trapping time at momentum p, and hence, we finally get the general
result:

P(p, θ) 

p�pθ

ρ(p)SR(θ) τ (p). (6.14)

Note that the only dependence on the model is in SR(θ) through the quantity τb,
which is equal to τtrap for the deterministic model, and to τtrap[µ�(µ)]1/µ for the
exponential model (see eq. (3.33) and eq. (3.34)). We will discuss in Chapter 7
the physical meaning of such a simple expression in terms of a ‘quasi-equilibrium’
regime.

6.2.2 Momentum distribution along a given axis

We suppose that the three-dimensional momentum distribution P(p, θ) is spher-
ically symmetric, and we introduce the reduced momentum distribution π(p, θ)
such that:

P(p, θ) = SD pD−1π(p, θ), (6.15)

where P(p, θ) is the distribution of the momentum modulus introduced in Section
6.2.1 and where SD pD−1 is the surface of the sphere of radius p in D dimensions
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6.2 Basic expressions and characterization 73

(see eq. (3.27)). In fact, π(p, θ) is the section of the three-dimensional momentum
distribution P(p, θ) along any axis1 passing through the origin p = 0. For
example,

π(p, θ) = P(px = p, py = 0, pz = 0, θ). (6.16)

Equation (6.4) and eq. (3.26) then give

π(p, θ) = 1

VD(ptrap)

∫ θ

0
dtl SR(tl)ψ(θ − tl |p), (6.17)

where VD(ptrap) = CD pD
trap is the volume of a D-dimensional sphere of radius ptrap

(see eq. (3.24)).
In the tails (p � pθ ), a calculation similar to the one leading to eq. (6.14) gives:

π(p, θ) 

p�pθ

1

VD(ptrap)
SR(θ) τ (p). (6.18)

6.2.3 Characterization of the cooled atoms’ momentum distribution

From π(p, θ), we can define (by analogy with the rms value for a Gaussian distri-
bution) the e−1/2 half-width of the peak of cooled atoms, denoted w(θ), through:

π(p = w(θ), θ) = e−1/2 π(p = 0, θ). (6.19)

In order to characterize the momentum distribution of the trapped atoms, it is
also useful to introduce the median momentum pm(θ) of the trapped atoms such
that: ∫ pm

0
P(p, θ) dp = 1

2
ftrap(θ) = 1

2

∫ ptrap

0
P(p, θ) dp. (6.20)

The height h(θ) of the cooled peak is simply defined by

h(θ) = π(p = 0, θ) = P(p = 0, θ). (6.21)

From eq. (6.17), one obtains:

h(θ) = 1

VD(ptrap)

∫ θ

0
SR(tl) dtl (6.22)

independently of the shape of P(τ |p), since for p = 0, τ(p) = ∞, so that
ψ(τ |p = 0) = 1 (see eqs. (6.10) and (6.11)). (Note again that SR(tl) depends
on the chosen model through τb.)

1 Note that π(p, θ) is not the probability distribution of px which would be obtained by integrating
P(px , py , pz , θ) over py and pz . The dimension of π(p, θ) is 1/pD .
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74 The momentum distribution

Equation (6.22) can be interpreted intuitively: the height of the cooled peak is propor-
tional to the number of atoms that have reached the state p = 0 between t = 0 and
t = θ . Since the probability of entering the trap between tl and tl + dt is equal to
SR(tl)dtl , its integral indeed gives the total number of entries in the trap. The factor
1/VD(ptrap) is related to the fraction of atoms which fall in the trap at p = 0 (where
they remain indefinitely) rather than anywhere else in the trap.

The Laplace transform of h(θ) is

Lh(s) = LSR(s)

sVD(ptrap)
, (6.23)

an equation which will be useful later on.
One can also define the fraction of cooled atoms fpeak(θ) as the proportion of

atoms of momentum less than one of the above characteristic momentum, for
example pθ :

fpeak(θ) =
∫ pθ

0
P(p, θ) dp. (6.24)

Finally, another important physical quantity is the phase space density D(θ) in
p = 0. In most experiments, one can neglect the increase of the spatial volume
occupied by the atoms during the interaction time2. This is due to the fact that
spatial diffusion is much slower than momentum diffusion. In such a case, the
increase of the phase space density exactly reflects the increase of the momentum
space density, which is described by the increase of h(θ).

The quantities P(p, θ), π(p, θ), h(θ) and fpeak(θ), given by eqs. (6.4), (6.17), (6.22)
and (6.24), characterize the momentum distribution. Therefore they cannot depend
on the parameter ptrap which was introduced only for convenience in intermediate

2 Note that this is not trivial since Lévy flights can also appear in real space and could lead to anomalously fast
diffusion. In fact, as shown here, this is not the case because the long trapping times actually correspond to
small velocities.
Let �(l) be the distribution of the jump lengths l in real space between two photon scatterings. If we consider
only the jumps of the trapped atoms, �(l) is given by �(l)dl = ρ(p)dp, where ρ(p) = DpD−1/pD

trap is the
probability density for an atom entering the trap to have the momentum p. The jump length l(p) for an atom
with momentum p is given by the free flight relation l(p) = p τ(p)/M where τ(p) = 1/R(p) ∝ p−α is the
duration of the free flight for such an atom. Using such a relation between l(p) and p to calculate |dp/dl|, we
obtain:

�(l) = ρ(p) |dp/dl| ∝ 1

l1+D/(α−1)
. (6.25)

One can recognize a broad distribution with a power-law tail described by the exponent µ′ = D/(α − 1). We
restrict ourselves to the case α ≥ 1 where long jumps are associated with the region p 
 0. Quantitatively, for
one-dimensional VSCPT with θ = 105 �−1 and metastable helium atoms, one finds that the spatial expansion
due to this Lévy flight process (α = 2, µ′ = 1) is negligible compared to the expansion due to standard
random walk of the untrapped atoms, which is itself negligible compared to the usual size of the cloud of
atoms (∼500 µm, see [Bar95]). Therefore, position diffusion can be neglected. Note finally that Lévy flights
in position space can also occur in usual (not subrecoil) laser cooling [MEZ96]. Such an anomalous diffusion
has been observed for a single ion trapped in an optical lattice [KSW97].
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6.3 Infinite 〈τ 〉 and finite 〈τ̂ 〉 75

calculations. The appearance of ptrap in the above expressions is only formal, since
all four expressions involve the product of 1/pD

trap with some integral of SR(t), which

turns out to be proportional to pD
trap.

It is now straightforward to calculate the momentum distribution and the above
related quantities. The given expressions mostly depend on the sprinkling distribu-
tion SR(t). The accuracy of the calculations is thus determined by the accuracy of
the expression used for SR(t) for large t . Here, the calculations will be carried on
to the leading order3 in t . As a consequence, the results will be exact in the long
time limit and approximate for intermediate times. The results depend strongly on
the finiteness of 〈τ 〉 and 〈τ̂ 〉. We shall treat here the general case where µ �= 1.
The case µ = 1 – of some importance in practice – is treated in Appendix C.

6.3 Case of an infinite average trapping time and a finite average recycling
time

This case is important in practice: it applies to efficient cooling schemes in which
friction provides a fast recycling (〈τ̂ 〉 finite) while filtering enables the accumula-
tion of a large fraction of trapped atoms (〈τ 〉 infinite). We have seen in Chapter 5
that the trapped fraction ftrap(θ) tends to one in this case.

6.3.1 Explicit form of the momentum distribution

We focus here on the momentum distribution π(p, θ) along a given axis and we
introduce into eq. (6.17) the leading term in t of the sprinkling distribution SR(t)
(see eq. (5.21))

SR(t) 
 sin(πµ)

πτ
µ

b

tµ−1.

Using pθ such that τ(pθ ) = θ (see eqs. (6.1) and (6.2)) and changing variables to

q = p

pθ

, (6.26a)

u = tl
θ
, (6.26b)

one can rewrite eq. (6.17) as:

π(p = qpθ , θ) = sin(πµ)

πCD

θµ

τ
µ

b pD
trap

∫ 1

0
du uµ−1ψ(qα(1 − u)) (6.27)

3 Except in Chapter 9 where the next order will be needed for optimization purposes.
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76 The momentum distribution

where ψ(qα(1 − u)) is equal to Y [1 − qα(1 − u)] for the deterministic model (eq.
(6.10)) and to e−qα(1−u) for the exponential one (eq. (6.11)). Using µ = D/α,
τ
µ

b = Aµτ
µ
trap and t0 pα

0 = τtrap pα
trap = θpα

θ , we can then transform eq. (6.27) into

π(p = qpθ , θ) = sin(πµ)

πµAµCD

1

pD
θ

G(q) (6.28)

where the function G(q) is equal to:

q ≤ 1: G(q) = 1 (6.29a)

q ≥ 1: G(q) = 1 − (
1 − q−α

)µ
(6.29b)

for the deterministic model (6.10), and

G(q) = µ

∫ 1

0
du uµ−1e−(1−u)qα

(6.30)

for the exponential model (6.11)4. Note that for both models, we have chosen to
impose G(0) = 1, rather than to normalize the integral of G to the same value. In
both cases, G(q → ∞) 
 µq−α (in the latter case, only the neighbourhood of
u = 1 contributes to the integral defining G).

Using the fact that G(0) = 1, expression (6.28) for π(p, θ) can be written in
terms of the reduced momentum q = p/pθ and the height h(θ) of the cooled peak
as:

π(p, θ) = h(θ)G
(

p

pθ

)
= h(θ)G

[
p

p0

(
θ

τ0

)1/α
]

(6.31)

with5

h(θ) = sin(πµ)

πµAµCD

1

pD
θ

∝ θµ. (6.32)

The functions G(q) are drawn in Fig. 6.1 for α = 2 and D = 1, corresponding to
µ = 1/2. The tails of G(q) vary as 1/(2q2) in agreement with the naive ‘ergodic’
result π(p, θ) ∝ τ(p), i.e. the population of the p state is proportional to the
mean residence time τ(p) in this state. However, the Lorentzian tails of G(q) do
not imply that G(q) itself is a Lorentzian. In Fig. 6.2 we compare G(q) for the
exponential model with a Lorentzian having the same normalization and the same
tails as G(q). The important point is that G(q) is much ‘flatter’ than the Lorentzian
for q ≤ 1. This is also particularly clear for the deterministic case (see Fig. 6.1)

4 The expression (6.30) for the exponential model is a confluent hypergeometric function: G(q) = M(1,
1 + µ,−qα) (see eq. (13.2.1) in [AbS70]).

5 An expression of h(θ) with subleading terms is given in Section 9.4, with an interesting interpretation.
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6.3 Infinite 〈τ 〉 and finite 〈τ̂ 〉 77

0 2 4 6 8 10
q  =  p/pθ

0

0.2

0.4

0.6

0.8

1

1.2

G
(q

) 

Exponential model
Deterministic model
‘Ergodic’ result

Fig. 6.1. Line shape G(q) with q = p/pθ for α = 2 and D = 1. The long-dashed curve
corresponds to the deterministic model and the solid curve corresponds to the exponential
one. The dashed curve represents the ‘ergodic’ result 1/(2q2) having the same asymptotic
behaviour for q → ∞. The characteristic values qe and qm defined in Section 6.3.2 are,
for the exponential model: qe = 0.890 . . . and qm = 0.798 . . . .

since G(q) has a perfectly horizontal plateau for 0 ≤ q ≤ 1. We will discuss
in the next chapter the physical meaning of such a behaviour and relate it to the
non-ergodic character of the cooling process. The difference between G and a
Lorentzian can actually be probed experimentally – see [SLC99] and Section 8.4.3
(Fig. 8.8).

6.3.2 Important features of the momentum distribution

There are quite a number of results which can be deduced from expression (6.31).

(i) The momentum distribution π(p, θ) remains self-similar for any θ : π(p, θ)
is always given by G(q) with a proper rescaling of the height and the width.

(ii) The auxiliary parameter ptrap no longer appears in expressions (6.31) or
(6.32), as expected.

(iii) The momentum pmax, which fixes the average recycling time, is also absent
from these expressions. This stems from the domination of SR(t) by trapping
times τ whose distribution P(τ ) is broad. Provided that 〈τ̂ 〉 is finite, i.e.
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78 The momentum distribution

0 2 4 6 8 10
q  =  p/pθ

0

0.5

1

1.5
G

(q
) 

Exponential model
Lorentzian

Fig. 6.2. Comparison of G(q) for the exponential model with a Lorentzian line shape that
has the same normalization and the same tails.

provided that pmax is finite, the recycling times τ̂ play no role to leading
order when θ is large. This remark also applies to all the quantities related
to π(p, θ).

(iv) The height h(θ) increases with θ , which is the signature of cooling. This
height increase has a power-law dependence with exponent µ = D/α deter-
mined only by the long tail behaviour of P(τ ).

(v) Since the only p-dependence of π(p, θ) is through the reduced momentum
q = p/pθ , it is clear that the 1/

√
e half-width w(θ) is given by

w(θ) = qe pθ with G(qe) = 1√
e
. (6.33)

In eq. (6.33) qe is a numerical factor which depends on µ and α. For the case
µ = 1/2, α = 2, and in the exponential model, one finds qe = 0.890 . . . .

This width thus corresponds, up to a numerical prefactor, to the characteristic
momentum pθ (eq. (6.2)). The same is true for the median momentum pm(θ)

defined by eq. (6.20), with a different prefactor qm, defined (for D = 1) as∫ qm

0
dq q D−1 G(q) = 1

2

∫ qtrap

0
dq q D−1 G(q) (6.34)

where qtrap = ptrap/pθ . For the case µ = 1/2, α = 2, and still in the
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6.4 Finite 〈τ 〉 and finite 〈τ̂ 〉 79

exponential model, one finds qm = 0.79 . . . . Thus, at any time θ , most
trapped atoms are indeed characterized by a momentum of order pθ .

(vi) The cooled fraction fpeak(θ) is computed from eq. (6.24) by using eqs. (6.27)
and (6.15). The parameter pθ is then eliminated thanks to eq. (6.2). One
finally obtains that fpeak(θ) is a constant (with a value between zero and one),
independent of time:

fpeak(θ) = D sin(πµ)

Aµπµ

∫ 1

0
dq q D−1G(q). (6.35)

For D = 1, µ = 1/2, one finds fpeak(θ) = 0.59 . . . (for the exponential
model).

(vii) It is very important to realize that, even if a finite fraction of the trapped
atoms have a momentum less than the e−1/2 half-width w(θ), the tails of the
distribution are much ‘fatter’ than for a Maxwellian distribution with the same
width. For pθ � p ≤ ptrap, corresponding to τ(p) � θ , one can use eq.
(6.18) which shows that π(p, θ) varies as SR(θ)τ (p) for p � pθ . One can
also use the asymptotic dependence G(q → ∞) 
 µq−α to obtain:

π(p, θ) 

p�pθ

µh(θ)

(
pθ

p

)α

∝ 1

θ1−µ pα
. (6.36)

Thus the momentum distribution tails decay with a power-law p-dependence.
In particular, for α = 2, it decays only as p−2, i.e. as a Lorentzian. The
average square momentum is not of order p2

θ but rather of order pD
trap p2−D

θ �
p2
θ . We note, however, that in the present case µ < 1, the value of π(p, θ) at

a given momentum p decays with θ for p � pθ : the tails therefore shrink.
The time evolution of the momentum distribution is shown in Fig. 6.3.

To sum up, the case treated in this section (〈τ 〉 infinite and 〈τ̂ 〉 finite) passes all
the criteria of efficient cooling: the height of the cooled peak increases with time,
its weight is a significant fraction of one and the amplitude of the tails vanishes at
large times. However, the shape of the peak is not Maxwell–Boltzmann, but rather
has ‘fat tails’ and a ‘flat top’!

6.4 Case of a finite average trapping time and a finite average recycling time

This case is also important in practice: it applies to schemes in which friction
provides fast recycling (〈τ̂ 〉 finite), while filtering is not selective enough to provide
an infinite average trapping time (〈τ 〉 finite) – which happens when the dimension
of space D is larger than the filtering exponent α. In this case, as we have discussed

Downloaded from Cambridge Books Online by IP 128.178.195.120 on Fri Mar 29 13:06:26 WET 2013.
http://dx.doi.org/10.1017/CBO9780511755668.007

Cambridge Books Online © Cambridge University Press, 2013



80 The momentum distribution

0 1 2 3 4 5
p/pθ0

0

2

4

6

8

10

π(
p,

θ)
 

θ/θ0 = 1

θ/θ0 = 10

θ/θ0 = 100

Fig. 6.3. Evolution of the momentum distribution π(p, θ) in the exponential model as θ
increases, for α = 2 and D = 1. The parameter θ0 is an arbitrary fixed time scale, and pθ0
is the corresponding characteristic momentum. Note that the distribution sharpens with
time, while the amplitude of the tails decreases.

in Chapter 5, the trapped fraction ftrap(θ) tends at large times to a constant

ftrap(θ) = 〈τ 〉
〈τ 〉 + 〈τ̂ 〉 =

(
1 + (µ − 1)

pD
max

pD−α
trap pα

0

)−1

. (6.37)

As this constant vanishes for ptrap → 0, one might think that subrecoil cooling is
inefficient in this case. In fact, the following calculations show unambiguously that
subrecoil cooling remains efficient even in this case.

6.4.1 Explicit form of the momentum distribution

The function SR(t) is now given by (see eq. (3.35) and eq. (3.56))6:

SR(t) 
 1

〈τ 〉 + 〈τ̂ 〉 =
[
τ0

(
µ

µ − 1

(
p0

ptrap

)α

+
(

pmax

ptrap

)D
)]−1

. (6.38)

6 Eq. (6.38) is exact for the deterministic model. For the exponential model, the first term in the denominator
involves a prefactor of order one.
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6.4 Finite 〈τ 〉 and finite 〈τ̂ 〉 81

In the limit where pmax � ptrap, p0, the above expression simplifies to:

SR(t) 
 1

〈τ̂ 〉 =
[
τ0

(
pmax

ptrap

)D
]−1

. (6.39)

Introducing this formula into eq. (6.17), one finally obtains, after simple integra-
tion:

π(p, θ) = 1

CD pD
max

θ

τ0
if p ≤ pθ

= 1

CD pD
max

τ(p)

τ0
if p ≥ pθ (6.40)

for the deterministic model (6.10), and

π(p, θ) = 1

CD pD
max

τ(p)

τ0

[
1 − exp

(
− θ

τ(p)

)]
(6.41)

for the exponential model (6.11).
These momentum distributions can also be written in a simple scaling form

similar to eq. (6.31):

π(p, θ) = h(θ) G̃
(

p

pθ

)
= h(θ) G̃

[
p

p0

(
θ

τ0

)1/α
]

(6.42)

with

h(θ) = 1

CD pD
max

θ

τ0
. (6.43)

For the deterministic model, the function G̃(q) is

q ≤ 1: G̃(q) = 1, (6.44a)

q ≥ 1: G̃(q) = q−α. (6.44b)

For the exponential model, it becomes

G̃(q) = q−α
[
1 − exp(−qα)

]
. (6.45)

Note that G̃(0) = 1 and that G̃(q → ∞) 
 q−α for both models. The functions
G̃(q) are drawn in Fig. 6.4 for α = 2 and D = 3, corresponding to µ = 3/2. As in
the previous section, the distribution π(p, θ) still presents a plateau-like region for
p ≤ pθ .
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Fig. 6.4. Line shape G̃(q), with q = p/pθ , for α = 2 and D = 3. The long-dashed
curve corresponds to the deterministic model, the solid curve to the exponential one, and
the dashed curve to the ‘ergodic’ result G̃(q) ∝ 1/(2q2) having the same behaviour as the
previous curves for q → ∞. The value of qe is now 1.048, while the median momentum
qm now depends on ptrap.

6.4.2 Important features of the momentum distribution

We point out now a few important features of the momentum distribution.

(i) The curve π(p, θ) is still self-similar for any θ .

(ii) The auxiliary parameter ptrap is absent from the expression for π(p, θ).

(iii) Contrary to what happens for the case µ < 1, the momentum pmax (which
determines the average recycling time) now appears explicitly in eqs. (6.40)
and (6.41). This reflects the fact that the trapping events are no longer pre-
dominant.

(iv) The height h(θ) of the peak of cooled atoms, given by eq. (6.43), increases
linearly with θ . In this sense, there is still a real cooling. A similar increase
is predicted for the phase space density.

(v) The e−1/2 half-width qe of G̃(q) is of the order of unity, so that the e−1/2

half-width w(θ) = qe pθ of the momentum distribution π(p, θ) is still of the
order of pθ . However, since µ > 1 is equivalent to α < D, the integral over p
of ρ(p)π(p, θ) is now dominated by large p values. The median momentum
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6.5 Cases with an infinite average recycling time 83

is thus given, when pθ � ptrap, by:

pm = 1

21/(D−α)
ptrap. (6.46)

Thus, the trapped atoms are characterized in this case by a momentum of order
ptrap � pθ : most trapped atoms reside on the ‘border’ of the trap.

(vi) The expression for the cooled fraction now reads, after changing variables to
q = p/pθ :

fpeak(θ) = Dh(θ)pD
θ

∫ 1

0
dq q D−1G̃(q). (6.47)

Using the fact that h(θ) ∝ θ and that pθ ∝ θ−1/α, one finally finds that
fpeak(θ) ∝ θ1−µ. Since now µ > 1, fpeak(θ) decreases to 0 when θ → ∞.

(vii) It clearly appears in eq. (6.40), and also in eq. (6.41), that, for p � pθ ,
π(p, θ) no longer depends on θ and has a p-dependence identical to that of
τ(p). Thus, as shown in Fig. 6.5, the tails of the momentum distribution
reach a steady-state when θ increases. They decrease with p as a power-law
p−α (for α = 2, the tails have a Lorentzian shape). In fact, the momentum
distribution (6.40) or (6.41) remains unchanged in the tails when θ increases.
Note, however, that the value pθ of the truncation decreases when θ increases.

To sum up, the case of finite 〈τ 〉 and finite 〈τ̂ 〉 presents a rather subtle cooling
behaviour: the cooled fraction tends to zero at large times – the trapped atoms
accumulate mostly in the tails of the peak, but there is still a clear cooling effect,
since the peak height and therefore the momentum and the phase space densities
increase significantly.

6.5 Cases with an infinite average recycling time

The cases with 〈τ̂ 〉 infinite are not very favourable for cooling. Even though it
seems almost always possible experimentally to make 〈τ̂ 〉 finite, these cases are
important because several precise one-dimensional σ+/σ− VSCPT experiments,
as well as numerical simulations, have been done with and correspond to infinite
〈τ̂ 〉. Moreover, one special case with infinite 〈τ̂ 〉 presents a significant new feature.
We therefore briefly present here the various situations with infinite 〈τ̂ 〉 discussing
in detail only the special case that brings a novel feature.

• If µ < µ̂ (< 1), the sprinkling distribution SR(t) is, at first order, exactly
the same as in Section 6.3, and so is the probability distribution P(τ ) of the
trapping times. Thus, one obtains exactly the same features for the momentum
distribution as in Section 6.3, where the trapping periods also dominate.
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Fig. 6.5. Evolution of the momentum distribution π(p, θ) in the exponential model as θ
increases for α = 2, D = 3 (〈τ 〉 and 〈τ̂ 〉 finite). The parameter θ0 is an arbitrary fixed time
scale. Note that while the height of the distribution increases with time, its tails reach a
stationary (time independent) state (compare with Fig. 6.3). Note also that since fpeak(θ) is
the integral from 0 to pθ = p0(τ0/θ)

1/α of the product of π(p, θ) and pD−1, the fraction
of cooled atoms goes to zero for large θ .

• If µ = µ̂ (< 1), the first term of the Laplace transform of the sprinkling
distribution SR(t) is the same as in the case µ < 1 < µ̂ (compare eq. (5.28)
and eq. (5.21)), except for the numerical prefactor. Thus, the results of Section
6.3 on the momentum distribution π(p, θ) still hold, except that the numerical
prefactor of π(p, θ) will be smaller due to the finite proportion of time spent by
the atoms in the recycling zone. This case applies to one-dimensional σ+/σ−
VSCPT cooling in the regime of intermediate times for which the Doppler effect
is negligible (see Sections 8.3.2, 8.4 and A.1.1.5 (p. 153)).

• If µ̂ < µ (< 1), the behaviour of the cooling becomes slightly different from
the previously treated cases, but the derivations are similar. This special case
applies to one-dimensional σ+/σ− VSCPT in the long time regime for which
the Doppler effect slows down the atomic diffusion at large p. The sprinkling
distribution SR(t) is now dominated by recycling times and we can write, in
analogy with eq. (5.21),

SR(t) = sin(πµ̂)

π
τ̂

−µ̂

b t µ̂−1 + · · · . (6.48)
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6.5 Cases with an infinite average recycling time 85

Proceeding as in Section 6.3.1, we obtain

π(p, θ) = h(θ) Ĝ
(

p

pθ

)
= h(θ) Ĝ

[
p

p0

(
θ

τ0

)1/α
]
, (6.49)

where the height h(θ) of the peak is

h(θ) = sin(πµ̂)

πµ̂CD pD
trapτ̂

µ̂

b

θµ̂ (6.50)

and where the shape Ĝ(q) is

q ≤ 1: Ĝ(q) = 1 (6.51a)

q ≥ 1: Ĝ(q) = 1 − (
1 − q−α

)µ̂
(6.51b)

for the deterministic model (6.10), and

Ĝ(q) = µ̂

∫ 1

0
du uµ̂−1e−(1−u)qα

(6.52)

for the exponential model (6.11).

Interesting features of the momentum distribution in this case are as follows.

(i) The curve π(p, θ) is self-similar for any θ .
(ii) The auxiliary parameter ptrap is still present in h(θ) because, to maintain the

generality of the treatment, we have not replaced τ̂b by is explicit expression
containing ptrap. If this was done, ptrap would disappear.

(iii) There is no momentum pmax in this problem.
(iv) The height h(θ) still increases in this case, in spite of the domination of

recycling times over trapping times. There is thus still real cooling. Of
course, the increase is slower than when trapping times dominate, i.e. when
µ < µ̂.

(v) The e−1/2 half-width qe of Ĝ(q) and the median qm are of the order of unity.
This indicates that the (few) trapped atoms are characterized by a momentum
of order pθ : most of them are in the cooled peak.

(vi) The cooled fraction fpeak(θ) tends to zero as θ → ∞.
(vii) The tails of the momentum distribution π(p, θ) vary as p−α for p � pθ ,

as in previously treated cases. On the other hand, for small momenta, we
now have Ĝ(q) =

q→0
1 − qα/(1 + µ̂) (exponential model), while we had

G(q) =
q→0

1 − qα/(1 + µ) in all previously treated cases. Thus, the shape of

the momentum distribution in the vicinity of p = 0 now depends on µ̂, i.e.
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it depends on the the jump rate far away from p = 0. This new feature is a
remarkable sign of non-ergodicity (see Section 7.5.1).

To sum up, when µ̂ < µ < 1, even though the cooled fraction tends to zero at
large times, there is still a clear cooling effect.

• The case µ̂ < 1 (infinite 〈τ̂ 〉) and µ > 1 (finite 〈τ 〉) is clearly very unfavourable:
a vanishingly small fraction of atoms is in the trap, and most of them are near
the border ptrap.

6.6 Overview of main results

In this chapter, we have derived the momentum distributions of the trapped atoms
and expressed them into scaling forms G(q = p/pθ ) that are time invariant and
depend only on µ and α. All cases in which µ and µ̂ are different from one have
been treated (the case µ = 1 is treated in Appendix C). Let us concentrate here
on the two most favourable cases corresponding to 〈τ̂ 〉 finite and 〈τ 〉 either infinite
(µ < 1) or finite (µ > 1) (see Sections 6.3 and 6.4). The most important results
are gathered in table 6.1.

Table 6.1. Momentum distribution properties: p and θ dependence in the case
where 〈τ̂ 〉 is finite, while 〈τ 〉 is either infinite (µ ≤ 1) or finite (µ > 1).

µ < 1 µ = 1 µ > 1

Height h(θ) θµ θ/ log θ θ

Half-width w(θ) θ−1/α θ−1/α θ−1/α

Median pm 
 pθ ∝ θ−1/α 
 √
pθ ptrap ∝ θ−1/2α 
 ptrap ∝ θ0

Cooled fraction fpeak(θ) 1 1 − O((log θ)−1) θ1−µ

Tails π(p � pθ , θ) (pαθ1−µ)−1 (pα log θ)−1 (pαθ0)−1

In both cases (µ < 1 and µ > 1), the following common features were
demonstrated. The height h(θ) of the cooled peak increases with θ , which is the
signature of cooling. The half-width w(θ) of the cooled peak is proportional to pθ .
It decreases with θ as θ−1/α independently of the dimensionality D. The tails of
the momentum distribution decay as 1/pα.
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6.6 Overview of main results 87

Apart from these common features, there are important differences between the
two cases µ < 1 and µ > 1. The parameter pmax does not appear in any of the
characteristic momenta for µ < 1, whereas it explicitly appears for µ > 1 in
prefactors not given in table 6.1. The cooled fraction fpeak(θ) tends to a constant
for µ < 1 whereas it decays as 1/θµ−1 when θ increases for µ > 1. The median
momentum pm is, up to a numerical prefactor, equal to pθ when µ < 1 and to ptrap

when µ > 1. Finally, the tails of the momentum distribution decrease at large times
(as 1/θ1−µ) when µ < 1, whereas they tend to a stationary value when µ > 1.

We will discuss the physical content of these results in the next chapter.
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